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ABSTRACT

In recent years, the installed capacity increment with regard to solar power generation has 
been highlighted as a crucial role played by Photovoltaic (PV) generation forecasting in 
integrating a growing number of distributed PV sites into power systems. Nevertheless, 
because of the PV generation’s unpredictable nature, deterministic point forecast methods 
struggle to accurately assess the uncertainties associated with PV generation. This paper 
presents a detailed structured review of the state-of-the-art concerning Probabilistic Solar 

Power Forecasting (PSPF), which covers 
forecasting methods, model comparison, 
forecasting horizon and quantification 
metrics. Our review methodology leverages 
the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) 
approach to systematically identify primary 
data sources, focusing on keywords such 
as probabilistic forecasting, Deep Learning 
(DL), and Machine learning (ML). Through 
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an extensive and rigorous search of renowned databases such as SCOPUS and Web of 
Science (WoS), we identified 36 relevant studies (n=36). Consequently, expert scholars 
decided to develop three themes: (1) Conventional PSPF, (2) PSPF utilizing ML, and (3) 
PSPF using DL. Probabilistic forecasting is an invaluable tool concerning power systems, 
especially regarding the rising proportion of renewable energy sources in the energy mix. 
We tackle the inherent uncertainty of renewable generation, maintain grid stability, and 
promote efficient energy management and planning. In the end, this research contributes 
to the development of a power system that is more resilient, reliable, and sustainable.

Keywords: Deep learning, machine learning, photovoltaic, probabilistic forecast, solar power 

INTRODUCTION

Solar power has emerged as a highly promising and environmentally sustainable renewable 
energy source. It holds the potential to address escalating global energy demands 
while simultaneously mitigating the negative impacts of greenhouse gas emissions 
(Panagiotopoulou et al., 2022; Shafiullah et al., 2022). Due to the high solar radiation, 
global Photovoltaic (PV) development has been increasing and is expected to reach 4,500 
GW by 2050 (Chowdhury et al., 2020). Global photovoltaic (PV) capacity experienced 
substantial growth in 2022, reaching a cumulative capacity of 1,185 GW, as reported by 
the International Energy Agency (IEA) (International Energy Agency, 2023). However, 
integrating solar energy into the grid system presents a few challenges, primarily due to 
its intermittent and unpredictable nature (Zafar et al., 2022). The intermittency stems from 
several factors, such as the diurnal sunlight cycle, cloud cover, and weather conditions. 
Conventional fossil fuel power plants generate a consistent and manageable output, while 
solar power generation fluctuates throughout the day and halts during nighttime. Moreover, 
the variability poses significant challenges for grid operators and energy planners tasked 
with ensuring a reliable power supply.

Traditional forecasting methods typically utilize deterministic approaches, providing 
a single-point forecast of expected solar generation (Maraggi et al., 2021). However, the 
application of Artificial Intelligence (AI) methods, particularly Machine Learning (ML), 
has garnered widespread attention in a multitude of recent research (Mellit et al., 2020; 
Pazikadin et al., 2020). In the current status quo, the ML method has become a focal point 
for numerous researchers. ML-based models leverage their ability to predict PV power with 
precision dependent on the volume and quality of data and the selected learning algorithm. 
Random Forest (RF), Support Vector Regression (SVR), Support Vector Machine (SVM), 
and Artificial Neural Network (ANN) are also some of the prominent ML models with 
regard to forecasting in the PV system application.

Nevertheless, conventional ML model learning typically offers limited depth for 
long-term sequence data (Wang et al., 2019). Since ML models learn from input data, 
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they struggle to familiarize themselves with environmental changes. Other than that, the 
complexity with regard to weather conditions as well as the massive input data required 
with respect to large-scale solar applications. It indicates that shallow models may not fully 
capture the corresponding deep non-linear characteristics as well as time-series dynamic 
characteristics regarding the dataset (Yu et al., 2020).

Deep Learning (DL) refers to a subset of machine models. It attracted significant 
attention because of its capability to tackle complex problems with massive as well as 
unstructured data volumes utilizing deep neural networks (Chen et al., 2019). Compared to 
ML, DL adapts to environmental changes by continuously receiving input and improving 
its models. Note that the main application scenario for DL models is sequential or time-
series data. These comprise Recurrent Neural Networks (RNN), Long Short-Term Memory 
(LSTM), Gated Recurrent Units (GRU), and Convolutional Neural Networks (CNN). The 
hierarchical relationship between AI, ML, and DL is illustrated in Figure 1.

Recently, there have been significant advancements in solar power forecasting. It 
marks a notable shift towards improving the accuracy and dependability of forecasting 
regarding solar power generation (Li et al., 2022; Thaker & Höller, 2022). This progress 
stems from acknowledging that traditional deterministic forecasts are inadequate for the 
modern energy landscape. It is defined by the unpredictable and intermittent nature of solar 
power generation since traditional deterministic methods forecast the power generation 
future relying on a single value without considering the associated uncertainty.

Probabilistic Solar Power Forecasting (PSPF) utilizes advanced techniques to generate 
forecasts that predict the most probable future solar power output and quantify the associated 
uncertainties (Abuella & Chowdhury, 2019; Wen et al., 2020). This approach is especially 
critical in variable solar generation, as it enables decision-makers to make well-informed 
choices based on a comprehensive understanding of the projected outputs and the inherent 

Figure 1. The relationship exists between ML, AI, 
Neural Networks (NN), and DL

risks involved. By assigning probabilities 
to different scenarios, this method fosters 
a deeper understanding of the potential 
range of outcomes and their associated 
uncertainties. Hence, this information is 
invaluable for decision-makers, enabling 
them to assess the risks and make well-
informed choices considering the likelihood 
of various outcomes.

Note that a significant number of research 
papers have reviewed the deterministic solar 
power forecast in ML and DL methods. The 
research on ML and DL models in PSPF 
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may be established new as well as lacking in comparison to deterministic forecasting 
(Ahmed et al., 2020; Chu et al., 2021; Devaraj et al., 2021; Feng et al., 2021; Kumari & 
Toshniwal, 2021; Mittal et al., 2022; Rajagukguk et al., 2020; Wang et al., 2019). PSPF has 
not yet been broadly adopted in PV fields. Nonetheless, its applications are progressively 
applied to other decision-making challenges under uncertainty. For instance, PSPF 
techniques are utilized in wind forecasting (Bazionis & Georgilakis, 2021) and domains 
beyond energy forecasting. It includes weather predictions (Kirkwood et al., 2021) and 
applications in economics and finance (Salisu et al., 2021). Solar power forecasting may 
benefit advancements in wind forecasting. However, it has challenges, such as high weather 
variability and increased penetration of PV systems into the grid.

Considering these developments, this structured review aims to furnish a comprehensive 
overview of the state-of-the-art in PSPF. One notable exclusion from the present literature 
is adopting the ML and DL models in probabilistic forecasting. It encourages us to 
examine cutting-edge forecasting approaches in their entirety, as well as the most current 
advancements in the PSPF field. 

This research’s contributions are given below:
• A comprehensive review of the impact of forecasting horizon and model 

performances. 
• A comparative evaluation of ML and DL in probabilistic forecasting model 

advancement.
• A comprehensive review of uncertainty quantification metric.

MATERIAL AND METHODS

Identification

The structured review consists of three key stages in choosing pertinent articles for this 
research. Note that the first stage involves recognizing keywords and searching for related 
terms utilizing thesauruses, previous research, encyclopedias, and dictionaries. Once all 
the relevant keywords were decided, search strings were generated regarding the SCOPUS 
and Web of Science (WoS) databases (Table 1). Before the structured review process’s 
initial phase, this study project acquired 165 papers from both databases.

Screening

As part of the screening process, extensive measures are needed to ensure the utmost 
accuracy and reliability of findings. In the initial stage of the study, 39 articles were 
meticulously screened using the scholars’ inclusion and exclusion criteria. The main 
focus was on literature, specifically research articles and conference papers, as they are 
the primary sources. Only publications in the English language were reviewed to ensure 
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consistency and clarity in findings. Consequently, it is important to note that the study 
focused on the past six years (2019–2024). For the second round, 39 articles were rejected 
to eliminate any duplicates. In total, 88 publications were eliminated based on our rigorous 
selection criteria.

Eligibility

The third phase resembled the eligibility assessment. A total of 77 articles were compiled. 
During this stage, a comprehensive evaluation of both article titles and essential content 
was conducted to verify their adherence to the inclusion criteria and alignment with the 
current research objectives of the study. Consequently, 41 reports were deemed ineligible 
for being outside the scope, featuring irrelevant titles, having abstracts unrelated to the 
study’s objectives, or full text not being accessible. Finally, 36 articles were deemed eligible 
for review, as tabulated in Table 2.

Table 2 
Searching selection criterion

Criterion Inclusion Exclusion
Language English Non-English
Timeline 2019–2024 <2019
Literature type Journal article and conference proceeding Book chapter, review, data paper

Table 1 
The search string

Database Descriptions

Scopus

TITLE-ABS-KEY ( ( "probabilistic forecast*" AND ( "deep learning" OR "deep 
neural network" OR deep OR "machine learning" OR "artificial intelligence" ) AND 
( "solar power" OR photovoltaic OR pv OR "large scale solar" OR "utility-scale" ) ) 
) AND PUBYEAR > 2019 AND PUBYEAR < 2025 AND ( LIMIT-TO ( DOCTYPE 
, "ar" ) OR LIMIT-TO ( DOCTYPE , "cp" ) ) AND ( LIMIT-TO ( LANGUAGE , 
"english" ) )
Access Date: 12 March 2024

WoS

"probabilistic forecast*" AND ( "deep learning" OR "deep neural network" OR 
deep OR "machine learning" OR "artificial intelligence" ) AND ( "solar power" OR 
photovoltaic OR pv OR "large scale solar" OR "utility-scale" ) (Topic) and 2024 or 
2023 or 2022 or 2021 or 2020 (Publication Years) and Article or Proceeding Paper 
(Document Types) and English (Languages)
Access Date: 12 March 2024
"probabilistic forecast*" AND ( "deep learning" OR "deep neural network" OR 
deep OR "machine learning" OR "artificial intelligence" ) AND ( "solar power" OR 
photovoltaic OR pv OR "large scale solar" OR "utility-scale" ) (Title) and 2023 or 
2022 or 2020 (Publication Years) and Article or Proceeding Paper (Document Types) 
and English (Languages)
Access Date: 12 March 2024
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Data Abstraction and Analysis

As a part of this study, an integrative analysis was utilized to assess a range of research 
designs, including quantitative, qualitative, and mixed methods. The study aimed to identify 
relevant topics and subtopics by utilizing a meticulous approach that commenced with data 
collection. Figure 2 illustrates the analysis of 36 articles to extract information related to 
the study’s topics. Correspondingly, the studies related to probabilistic forecasting were 
assessed, carefully considering each study’s research methods and findings. Subsequently, 
the authors collaborated to develop themes based on the evidence presented in the study’s 
context. A comprehensive log was diligently maintained throughout the entirety of the 
data analysis process, meticulously documenting all pertinent analyses and perspectives 
relevant to the interpretation of the data. Once the themes were developed, the authors 
compared them to ensure consistency. The produced themes were then fine-tuned to 
establish consistency. In securing the findings’ validity, two experts were interviewed, one 
having expertise in solar power forecasting as well as statistical analysis. These experts 
reviewed each sub-theme to ensure its clarity, importance, and adequacy by determining 
domain validity. Consequently, the author adjusted corresponding to the feedback and 
comments by experts.

Figure 2. Flow diagram of the proposed search study (Mustafa, 2022)
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RESULTS AND DISCUSSION

Accurate forecasts of solar power generation are vital for effective grid management and 
integrating renewable energy sources. Researchers have developed various solar power 
forecasting techniques, including probabilistic approaches, ML, and DL.

Throughout the most recent six years, the total number of publications per year 
from 2019 to 2024 is illustrated in Figure 3. The development of the PSPF study that is 
being presented demonstrates a steady rise in the number of publications for the WoS 
and SCOPUS databases. By 2020, there were twice as many documents available as in 
2019. Note that a total of 12 documents were published. The years 2022 and 2023 saw the 
highest peak publishing numbers, with 36 papers published annually overall. Whether they 
are small- or large-scale solar systems, this spike probably reflects the increased interest 
in grid-connected PV systems. However, with just seven papers produced in 2024, there 
was a noticeable decline in the overall number of publications. Instead of a true decline in 
interest, this decline could be attributed to missing data or database updates. The data that 
has been presented indicates a distinct preference for publishing in the SCOPUS database 
over WoS. This preference could result from factors including citation metrics evaluation 
or accessibility. Other than that, these publications demonstrate the increasing interest 
in and significance of precise PSPF in renewable energy published in several scholarly 
journals and conference proceedings. 

An extensive literature review was conducted, and 36 relevant articles were analyzed. 
It categorized them into three themes: probabilistic forecasting (eight articles) in Table 3, 
PSPF with ML (9 articles) in Table 4, and PSPF with DL (19 articles) in Table 5. The analysis 
has covered a significant state-of-the-art trend, providing a comprehensive overview of the 

Figure 3. Publication trend analysis of PSPF
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present research status of PSPF, as exhibited 
in Tables 3 to 5. Moreover, the analysis 
has disclosed the existence of forecasting 
models based on day-ahead and hour-
ahead forecasting horizons, as depicted in 
Figure 4. The term day ahead resembles a 
forecasting horizon enveloping the next day 
(Andrade et al., 2017). Conversely, an hour 
ahead generally pertains to the formulation 
of forecasting that covers the next hour from 
the current moment (Wang et al., 2020). 
The number of articles published on hour-
ahead forecasting in 2022 has significantly 
increased compared to prior years. It 
indicates an increasing attraction to this field 

Figure 4. The probabilistic forecasting is based on 
the forecasting horizon from 2019 to 2024
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of study. Conversely, the number of articles published on day-ahead forecasting peaked in 
2020 and has relatively maintained over the following four years.

Impact of Forecasting Horizon and Model Performances

The accuracy and reliability of PV power forecasting are achieved for a limited period 
called forecasting horizon. The selection of appropriate time horizons allows grid 
operators, utility companies, and energy managers to effectively strategize and enhance 
the operation of the grid and balance the supply and demand while maintaining the 
accuracy of forecasting output (Ahmed et al., 2020). Depending on the application for 
which forecasting is employed, the classification can vary significantly, involving very 
short, short-term, medium-term, or long-term horizons. However, there is no standard on 
horizon classifications, and the categories may overlap in some applications. Table 6 shows 
the type of forecasting horizon for the application in PV fields. 

Based on the results from Tables 3 to 5, the majority of papers address short-term 
forecasting, focusing on horizons ranging from intra-day (hour ahead to day-ahead) (Bai et 
al., 2023; Mitrentsis & Lens, 2022; Phan et al., 2024). According to Mpfumali et al. (2019), 
“day ahead” pertains to a forecasting horizon that spans the entirety of the subsequent day. 
On the other hand, the term “hour ahead” typically refers to the development of a forecast 
that encompasses the subsequent hour from the present moment (Wang et al., 2020). 

The field of probabilistic forecasting has yielded significant insight. Research reveals 
that forecasting models display varying performance levels based on the evaluation time 
horizon. Moreover, recent research has demonstrated the significance of employing short-
term (hour ahead) forecasting methodologies when integrating PV power generation into 
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the electricity grid. Shi et al. (2023) have proposed an innovative method for predicting 
PV power outputs in the short term, focusing on time intervals ranging from minutes to 
hours. The researchers employ LSTM networks in combination with Bayesian optimization 
to provide probabilistic predictions. These predictions have prediction ranges of 80%, 
90%, and 95%, resulting in accuracies of 0.08, 0.10, and 0.13, respectively. Jonler et al. 
(2023) have proposed a methodology that utilizes ensemble modeling and QR techniques 
to generate probabilistic predictions of Global Horizontal Irradiance (GHI) within a short-
term horizon. The proposed approach provides probabilistic predictions encompassing the 
whole spectrum of conceivable GHI values, resulting in a predicted Mean Absolute Scaled 
Error (MASE) as minimal as 0.807. 

Accuracy is of utmost importance in short-term forecasting when the level of 
uncertainty is comparatively smaller than that of longer forecasting horizons. Although 
advanced forecasting approaches are valuable, conventional XGBoost (Polo et al., 
2023) may also be enough for short-term forecasting. The utilization of advanced 
forecasting methodologies is paramount in successfully integrating solar PV power 
generation into the power grid, guaranteeing efficient and dependable management of 
energy resources.

In solar power forecasting, day-ahead forecasting is significant for power system 
planning and market operations. The research conducted by Dumas et al. (2022; Zang 
et al., 2020) demonstrates the significance of day-ahead forecasting in these scenarios. 
Consequently, their study’s findings indicate that this method improves forecasting 
precision while maintaining computing efficiency. It presents it as appropriate for 
incorporation into intraday decision-making tools for effective optimization. Other 
researchers, Huang and Wei (2020) and Kharlova et al. (2020), also explore day-ahead 
forecasting but propose innovative approaches to improve precision and reliability. The 
proposed techniques achieved skill scores ranging from 42.5% to 46% utilizing normalized 
root mean square error (RMSE) based on forecast skill records as a performance metric. 
However, challenges escalate with increasing uncertainty over longer forecasting horizons 
(Liu et al., 2023). 

As the forecasting horizon increases, there is an increasing demand for complex models 
that can effectively manage increased levels of uncertainty. PSPF is preferable for longer-
term horizons since it provides a more reliable representation of possible solar power 
generation. Furthermore, the increasing length of the forecasting horizon highlights the 
need for reliable probabilistic forecasting methods, such as advanced DL models, to enable 
efficient decision-making in power systems, given the inherent uncertainty associated with 
solar power generation. The latest research by Bai et al. (2024) and  Phan et al. (2024) 
employs the DL method for day-ahead forecasts. The advancement of AI techniques, 
specifically DL algorithms, has shown significant effectiveness in PSPF. 
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The significance of the forecasting horizon is apparent in numerous aspects of power 
system operations, market dynamics, and the incorporation of renewable energy sources. 
Day-ahead and hour-ahead forecasting are vital to decision-making since they serve 
different purposes regarding planning horizons and operational requirements. The accuracy 
level generally tends to decrease as the duration of the forecasting period increases. 
Nevertheless, selecting these forecasting horizons depends on the distinct requirements 
and objectives. The adaptability of forecasting approaches to correspond with expected 
forecasting timeframes is crucial to ensure accurate, reliable, and effective decision-making 
in power system management and planning. 

Comparative Evaluation of Machine Learning and Deep Learning in Probabilistic 
Model Advancement

Two methods can be used to create a probabilistic forecast: (1) parametric, calculating the 
parameters of the prediction distribution, and (2) nonparametric, which requires developing 
a predictive distribution with a limited amount of data observations. Many scholars prefer 
the parametric approach, a straightforward technique for creating predictive distributions 
that is well-known for its simplicity and low computational cost. After comparing 
probabilistic predictions made with parametric and nonparametric methods, Bakker et al. 
(2019) discovered that the nonparametric approaches perform significantly. The use of 
parametrics in the probabilistic forecast is restricted since they are the least dependable 
compared to nonparametric methods.

With the nonparametric method, the distribution is created using a variety of observable 
models rather than assuming its shape. One significant benefit of the nonparametric method 
is its flexibility. The input data are used to directly compute the output value distribution, 
reducing the number of estimating errors brought on by false assumptions concerning a 
specific distribution. 

Initially, parametric and nonparametric methods were considered conventional 
probabilistic methods. These conventional methods traditionally relied on statistical 
approaches such as Autoregressive Moving Averages (ARMA), Autoregressive Integrated 
Moving Averages (ARIMA), Bayesian, Gaussian Distribution (Doelle et al., 2023), Quantile 
Regression (QR) (Zhou et al., 2022) (Mpfumali et al., 2019), Kernel Density Estimation 
(KDE) (Bai et al., 2023) and bootstrapping. The straightforward conventional modeling 
approaches that require fewer computational resources and expertise give an advantage to 
this method. Due to this, conventional probabilistic forecasting methods frequently offer 
interpretable models, facilitating comprehension of the fundamental assumption (Doelle 
et al., 2023). However, conventional probabilistic forecasting might encounter difficulties 
when dealing with big datasets based on multiple meteorological variables (Bai et al., 2023). 
Conventional probabilistic forecasting techniques, QR, Bayesian models, and Gaussian 
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methods frequently encounter difficulties in effectively capturing the associated complexity. 
Handling a massive dataset may require significant resources and time to train the model 
and tune complexity, thus making it unfeasible for certain applications.

In recent years, a significant increase in research has highlighted the ML models’ 
incorporation within the domain of PSPF. The increasing interest in ML models arises 
from recognizing their enhanced efficacy in handling the inherent complexities of solar 
power forecasting, exceeding conventional approaches (Liu et al., 2023; Polo et al., 2023; 
Qiao et al., 2021). Their proficiency in employing advanced algorithms and computational 
techniques enables them to discern complex patterns, enhancing forecasting accuracy. 
Implementing ML, particularly decision tree-based methods such as XGBoost and Random 
Forest, allows the inclusion of exogenous parameters, leading to improved forecasting 
accuracy. This flexibility enables the model to capture additional information that may 
influence solar power generation (Polo et al., 2023). Besides that, the availability of 
implementation tools, such as the forecast library in Python, facilitates the implementation 
of different deterministic and probabilistic forecasting schemes by using ML models. These 
transparency implementation tools enable reproducibility and accelerate experimentation 
with different methodologies (Mitrentsis et al., 2022).

Hybrid ensemble models, which integrate multiple ML algorithms, exhibit the potential 
to enhance the accuracy of PSPF by offering enhanced prediction intervals essential for 
capturing the inherent uncertainty in solar power output (Liu & Xu, 2020). According 
to Bhavsar et al. (2021), ML techniques effectively handle uncertainty, decreasing the 
number of scenarios needed for analysis and simplifying the forecasting process. Mitrentsis 
and Lens (2022) proposed an advanced study that researched a two-stage probabilistic 
forecasting framework for PV power forecasting. It utilizes Natural Gradient Boosting 
(NGBoost) and Shapley additive explanation. Compared to state-of-the-art algorithms, the 
framework improved performance and accuracy, allowing for detailed analysis of complex 
non-linear relationships and interaction effects.  

Since ML methods learn from the input data, they struggle to adapt to environmental 
changes. It could potentially lead to the models not fully capturing the corresponding 
deep non-linear characteristics under varying environmental conditions. On top of that, 
ML methods may encounter scalability issues that require extensive computational 
resources for data training, especially when dealing with time series utility-scale PV 
system applications (Mitrentsis & Lens, 2022).

In the age of computer hardware, software, and big data technology advancements, 
a notable and expanding emphasis exists on DL networks. It draws inspiration from the 
human brain’s functions and structure. These networks have evolved into a vital component 
of contemporary AI and ML owing to their remarkable capacity to autonomously identify 
and grasp intricate patterns and representations from extensive datasets. Among DL-based 
models, LSTM is widely used in PSPF due to its ability to model time series data and 
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capture long-term temporal dependencies (Sun et al., 2022). (Sansine et al., 2022; Shi et al., 
2023) evaluated various DL models based on LSTM and emphasized that the LSTM model 
is the most reliable in terms of its practicality for applications inside the energy market. 

Notably, a two-stage hybrid approach combining Variational Mode Decomposition 
(VMD) and Innovative Capsule CNN (ACCNet) achieves high Coefficient of Determination 
(R2) values for different forecast horizons, indicating strong predictive performance (Liu 
et al., 2023). Other models, such as Laplace and DeepAR (LSTM) (Lin et al., 2022), 
demonstrate good calibration and accuracy, while CNN-LSTM-Gaussian showcases 
robust binary classification performance. Normalizing Flow (NF), Generative Adversarial 
Networks (GAN), as well as Variational AutoEncoders (VAE), reveal that NF outperforms 
others in probabilistic forecasting (Dumas et al., 2022). LSTM-AE excels in point 
forecasting with low MAE and RMSE, while DSANet exhibits low error sensitivity 
(Mashlakov et al., 2021). However, some methods show room for improvement, such as 
the Auto-regressive recurrent neural network (DeepAR) (Park et al., 2020), which yields 
relatively high RMSE and MAE. These findings offer a detailed analysis of DL methods 
with regard to solar power forecasting, assisting in selecting appropriate models based on 
specific forecasting requirements.

The present study on Transformer architectures for probabilistic DL forecasting 
has revealed higher accuracy than alternative AI models. Transformers utilize parallel 
processing capabilities and excel over traditional methods in dynamic forecasting contexts 
(Phan et al., 2024). DL algorithms greatly improve the accuracy and efficiency of PSPF, 
providing scalable and flexible solutions for dynamic situations. Note that probabilistic DL 
techniques have the advantage of being extremely scalable due to their ability to leverage 
the parallel processing capabilities of Graphics Processing Units (GPUs) as well as Tensor 
Processing Units (TPUs). Other than that, they adapt to diverse data sources and changing 
conditions, making them more flexible in dynamic forecasting environments.   

Nevertheless, the development and implementation of DL models inherently incur 
costs associated with hardware resources like GPUs and TPUs. DL models also need 
sufficient data to train for accurate probabilistic forecasting (Jonler et al., 2023). Compared 
to conventional probabilistic forecasting methods, pre-processing and data imputation need 
to be implemented in the DL model to help improve convergence, prevent vanishing or 
exploding gradients, and enhance the model’s ability to learn relevant patterns from the 
data (Phan et al., 2024). 

Table 7 summarizes PSPF’s strengths and weaknesses. However, the advancement 
of ML and DL models holds great promise for enhancing the accuracy and reliability of 
probabilistic solar power forecasting in the future, thereby facilitating the integration of 
solar energy into the power grid and supporting the transition to renewable energy sources. 
As a result, probabilistic ML and DL techniques are advantageous in improving forecasting 
performance compared to conventional methods.
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Table 7
Strengths and weaknesses of the PSPF Model

Model category Strength Weakness
Conventional 
PSPF

• Simplicity modeling approaches
• Low computational cost

• Difficulties in capturing the complexity 
associated.

• Requires significant resources and time 
to train and tune the model.

• Not feasible in handling massive 
datasets and complex application

ML PSPF • Ability to adapt to dynamic and 
uncertain environments.

• Availability of open-source tools.
• Allows the inclusion of exogenous 

parameters.

•  Difficulty in capturing long-term 
temporal dependencies.

• Requiring extensive computational 
resources

• Require a large dataset.
DL PSPF • Ability to capture long-term temporal 

dependencies.
• Adapt to diverse data sources and 

uncertain environments.
• Ability to leverage parallel 

processing capabilities.

• High cost associated (GPU and TPU)
• Requiring extensive computational 

resources
• Require a large dataset.

Uncertainty Quantification Metric

Probabilistic forecasts, frequently depicted as interval or scenario predictions, present 
further complexity in contrast to deterministic forecasts due to incorporating a range of 
possible outcomes compared to a single-point prediction. The measurement of uncertainty in 
PSPF implies assessing the reliability and sharpness of these forecasts. Note that reliability 
is related to the probabilistic calculation, the forecasting model’s accuracy that aligns 
with the actual probabilities. At the same time, sharpness quantifies the dispersion of the 
predicted distributions and evaluates the forecasts independently, indicating the forecast 
model’s usefulness (Doubleday et al., 2020).

The utilization of metrics to assess reliability and sharpness offers valuable insights 
into the quality and accuracy of forecasting. Prediction Interval Coverage Probability 
(PICP) and Average Coverage Error (ACE) are often utilized reliability metrics that assess 
the extent to which prediction intervals correspond to observed data. Lower ACE values 
indicate better reliability, as the prediction intervals are closer to the desired coverage 
probability. An elevated PICP, as illustrated by (Mpfumali et al., 2019) attaining 98.82%, 
indicates superior reliability, whereas reduced ACE values indicate enhanced reliability.

The optimization of sharpness while maintaining reliability is crucial in probabilistic 
forecasting since it helps to reduce uncertainty. Sharpness analysis often uses metrics 
such as Coverage Width-based Criterion (CWC), Prediction Interval Normalized 
Average Width (PINAW), and CRPS. The PINAW metric evaluates the mean width of 
prediction intervals concerning the variability observed in the data, where smaller values 
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indicate more precise forecasts. Nevertheless, the capability to compare studies may be 
constrained when employing distinct metrics, as outlined by Phan et al. (2024) and Bai et 
al. (2024). The CWC technique assesses the difference between predicted and observed 
cumulative distribution functions, where lower values indicate superior performance. 
It is demonstrated by the research undertaken by Sansine et al. (2022) with 38%, 68%, 
95%, and 99% with regard to prediction interval. CWC values are 6.3, 14.68, 59.13, 
and 40.1, respectively.

CRPS is a robust metric that combines reliability and sharpness evaluation. The key 
advantage of this approach is its ability to facilitate the comparison between probabilistic 
and point forecasts. Consequently, it has the potential to establish itself as an established 
method for validating probabilistic forecasts, as proposed by Lauret et al. (2019). CRPS 
has become popular in academic research because it maintains unit consistency with the 
projected variable. Studies conducted by Yang (2020), Alessandrini and McCandless 
(2020), Mpfumali et al. (2019) and Lin et al. (2022) have consistently shown that lower 
scores are indicative of higher accuracy. For example, Dumas et al. (2021) compared CRPS 
values among several forecasting models. LSTM had the lowest CRPS of 4.4, lower than 
MLP and GBR. Furthermore, a study conducted by Mitrentsis et al. (2022) examined the 
CRPS across various seasons, revealing that the winter season exhibited the lowest CRPS 
value of 0.01. The investigation of spatial distribution in the United States and Reunion 
Island revealed disparate values of CRPS, with the United States exhibiting lower scores 
in comparison to Reunion Island, with 6.97 and 23.1, respectively.

ML and DL models routinely demonstrate superior performance compared to 
conventional methods. Mitrentsis et al. (2022) demonstrated that the ML model attained a 
CRPS value of 0.01, whereas Lin et al. (2022) reported that the DL model achieved a CRPS 
value of 0.0523. As Yagli et al. (2020) described, the conventional approach exhibited a 
CRPS value 0.615. Furthermore, significant research highlights the effectiveness of ML 
methods in enhancing solar power forecasting accuracy. ML methodologies have exhibited 
a capacity to adjust to changing circumstances, providing precision of solar power (Bai 
et al., 2024; Jonler et al., 2023; Sansine et al., 2022). Additionally, ML-based offers 
probabilistic forecasts and prediction intervals, which hold significant value in the context 
of grid management and decision-making procedures. 

Beyond the CRPS method, the pinball loss function and the Winkler score account 
for reliability and sharpness, making them particularly suitable for quantile forecasting. 
A low pinball score and Winkler score signify an accurate probabilistic prediction. Zhou 
et al. (2022) conducted an assessment 5 minutes ahead; forecasting indicates a minimum 
Pinball loss of 1.76kW in contrast to 2.767kW observed 1 hour ahead. For the Winkler 
score, the lowest 25.75kW was observed 5 minutes ahead of forecasting compared to 
39.94kW obtained 1 hour ahead of forecasting. Overall, these uncertainty quantification 



Noor Hasliza Abdul Rahman, Shahril Irwan Sulaiman, Mohamad Zhafran Hussin, Muhammad Asraf Hairuddin, 
Ezril Hisham Mat Saat and Nur Dalila Khirul Ashar

PREPRINT

metrics serve a valuable role in optimizing the use of PSPF to evaluate accuracy and 
reliability, facilitating informed decisions regarding integrating renewable energy and 
managing power grids.

CONCLUSION

In conclusion, integrating ML and DL methods has resulted in remarkable advancements in 
PSPF. Researchers have explored various models and evaluation metrics to improve PSPF 
reliability and accuracy. Note that forecasting horizons significantly impact the performance 
of solar power forecasting models. The increasing length of the forecasting horizon highlights 
the need for reliable probabilistic forecasting methods such as the ML and DL models. Day-
ahead and hour-ahead forecasting are both vital components of the decision-making process 
since they serve different purposes in terms of planning horizons and operational requirements. 
ML ensemble and hybrid models show promise in improving the accuracy of PSPF by 
providing improved prediction intervals with low relative MAE and RMSE values and high 
accuracy scores. The advancement of the latest DL Transformer architecture, leveraging 
their ability to discover intricate patterns in large datasets, has revealed higher accuracy. 
The uncertainty quantification metric, CRPS’s robust metric that combines reliability and 
sharpness evaluation, assists in selecting the best probabilistic forecasts due to its ability 
to maintain unit consistency with the projected variable. These research findings provide 
valuable insights for stakeholders in solar power generation, enabling informed choices about 
forecasting methods, horizons, and uncertainty metrics. As the field evolves, integrating the 
ML and DL methods is crucial in improving efficiency and reliability regarding solar power 
forecasting, ultimately contributing to the growth and sustainability of renewable energy 
sources. Future work could extend a comprehensive review of a hybrid probabilistic model 
method for utility-scale PV systems known as large-scale solar.
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